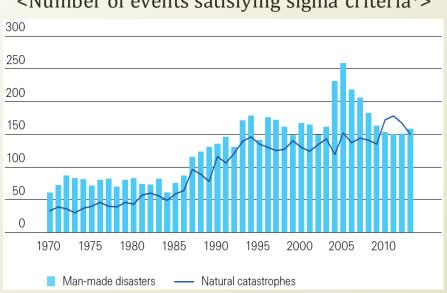
Identifying the Evolution of Disasters and Responses with Network-Text Analysis

Kyungwoo Song, Do-Hyeong Kim, Su-Jin Shin, Il-Chul Moon Dept. of Industrial and Systems Engineering, KAIST Socio-Economic Systems Laboratory

Kyungwoo Song(KAIST)


Disasters and Responses with Text Analysis

Introduction

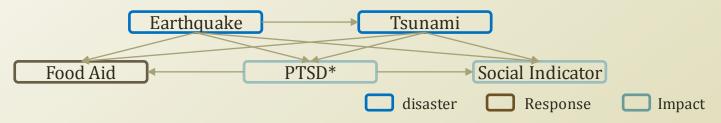
Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

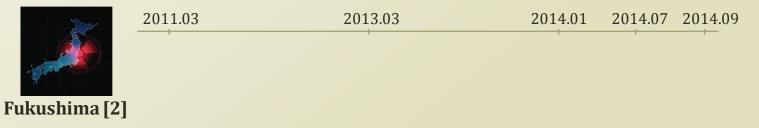
Importance of Disaster [1]

<Number of events satisfying sigma criteria*>

Generally, the number of disaster events ٠ grows steadily


(*1. Total economics losses over 96m\$ or

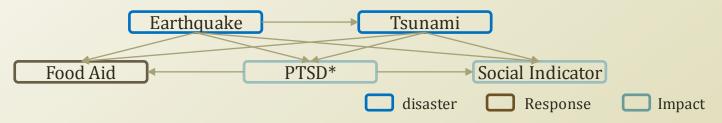
2.50 injured and homeless 2000 people etc.)


Complexity of Disaster

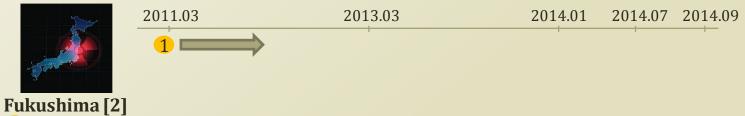
Eulmahima Daji	ichi nuclear disaster [2]
	 Nuclear disaster at the Fukushima Nuclear Power Plant on 11 March 2011 Earthquake+Tsunami+Nuclear 15884 confirmed death Expected expenses more than \$105 billion
	 Pata Breach [3] Between late February and early march 2014 Anthropogenic Intentional 145 million people of usernames, passwords, phone numbers and physical addresses are leaked

- Analysis of overall disaster trend is essential
 - Disaster, response and their impact are intertwined.

- Long-term Trend
 - The effect and response policy of complex disaster occurs in a long-term period



(*Post-Traumatic Stress Disorder)

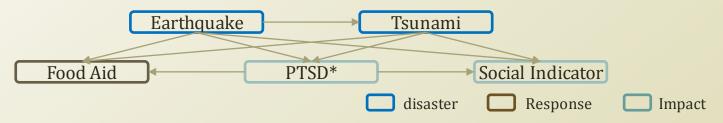

Kyungwoo Song(KAIST)

SMC 2014 4

- Analysis of overall disaster trend is essential
 - Disaster, response and their impact are intertwined.

- Long-term Trend
 - The effect and response policy of complex disaster occurs in a long-term period

1 The unit 3 reactor building explodes


(*Post-Traumatic Stress Disorder)

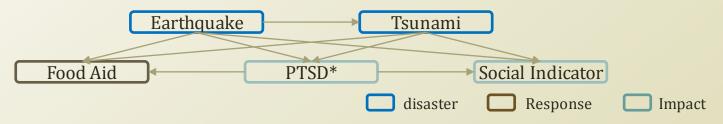
Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

SMC 2014 5

- Analysis of overall disaster trend is essential
 - Disaster, response and their impact are intertwined.

- Long-term Trend
 - The effect and response policy of complex disaster occurs in a long-term period


Fukushima

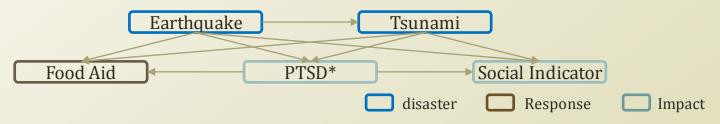
- **1** The unit 3 reactor building explodes
- 2 Government admits Fukushima have leaked radioactive water

(*Post-Traumatic Stress Disorder)

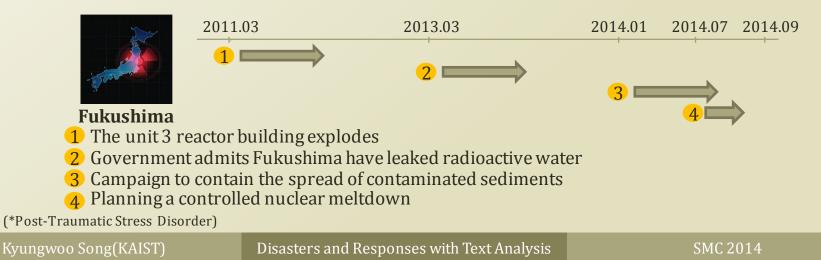
Kyungwoo Song(KAIST)

- Analysis of overall disaster trend is essential
 - Disaster, response and their impact are intertwined.

- Long-term Trend
 - The effect and response policy of complex disaster occurs in a long-term period


Fukushima

- **1** The unit 3 reactor building explodes
- 2 Government admits Fukushima have leaked radioactive water
- **3** Campaign to contain the spread of contaminated sediments


(*Post-Traumatic Stress Disorder)

Kyungwoo Song(KAIST)

- Analysis of overall disaster trend is essential
 - Disaster, response and their impact are intertwined.

- Long-term Trend
 - The effect and response policy of complex disaster occurs in a long-term period

Previous Research

Major flood disasters in Europe: 1950–2005, (J. I. Barredo, 2006) [4]

- Investigation of the flooding over 56 years in the EU region
- Analysis of the statistical long-term trend of financial damage and casualties

Trends in mental illness and suicidality after Hurricane Katrina (R. C. Kessler, 2008) [5]

- Investigation about the trends of PTSD after Katrina hurricane
- Surveyed over the two-year period.

Area-Restricted trend analysis Context-Restricted Analysis

Discovering Evolutionary Theme Patterns from Text (Q. Mei and C. Zhai, 2005) [6]

- Analysis of the changes of online news articles about Asia Tsunami with from 2004 to 2005 with text-mining techniques
- The analysis utilized a probabilistic mixture model to extract topics of the articles

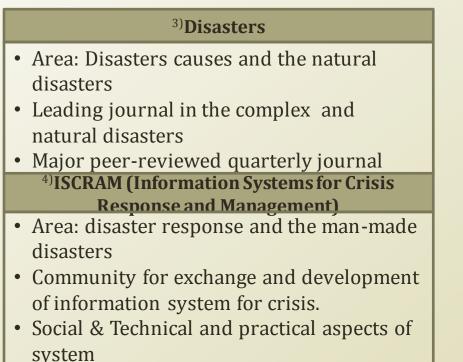
Trends of Probable Post-Traumatic Stress Disorder in New York City after the September 11 Terrorist Attacks(S.Galea, 2003) [7]

- Surveyed posttraumatic stress disorder (PTSD) of New-York citizens after 911 terror.
- Measured by one, four, and six months
- Period-Restricted trend analysis
 Word level-Restricted analysis
 Sequential-Restricted analysis

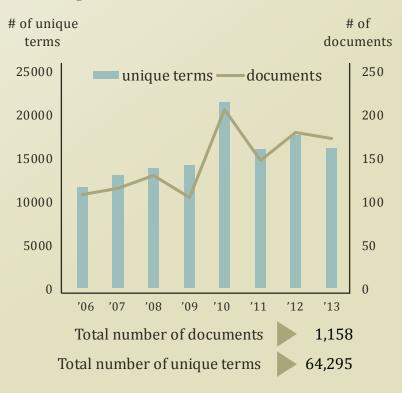
We analyze the overall disaster trend with text-mining technique (Text-mining technique is helpful to analyze the large and long term dataset and its context)

Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

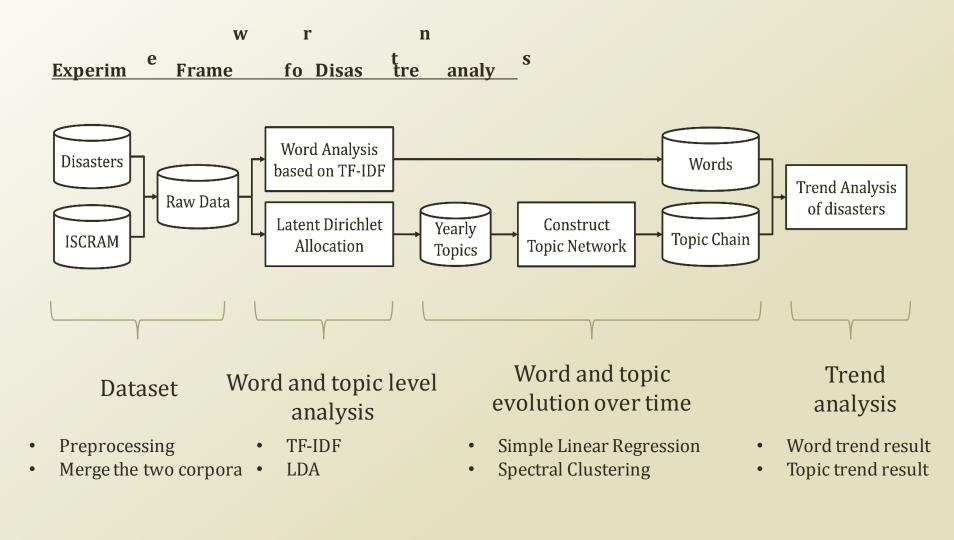

Research Objective

- Provide insights into the future disasters and responses
- Analysis of knowledge in the disaster field as a whole
 - Word analysis
 - Major words through all years('06~'13)
 - Fast increasing and decreasing words
 - Topic analysis
 - Fast increasing & decreasing Topics
 - Trend in fast increasing & decreasing topics
 - ex)Damage estimation is a fast increasing topic
 - From PTSD to social environment analysis in an estimation trend


Experiment Dataset

- Research articles explain the disaster, its cause, response, damage and so on carefully
- Necessity of dataset considering disasters and response

Dataset Introduction


Descriptive Statistics Table

*Source: 3) http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-7717/homepage/ProductInformation.html
 4) http://www.iscramlive.org/portal/mission

Disasters and Responses with Text Analysis

Research Framework

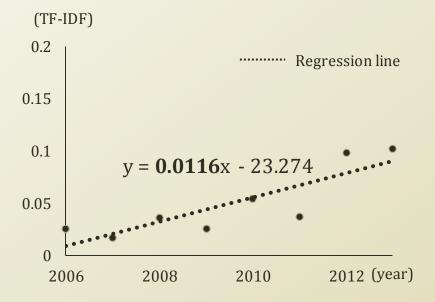
Methodology

Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

Word-level:TF-IDF

- We want to know the important and highest frequency term in the corpus excluding the word like 'the, as, and' which is used a lot in all of the document
- TF-IDF is a measurement indicating the importance of words in the information retrieval field (high TF-IDF -> important word)


$$\begin{aligned} \text{FF-IDF} &= \text{TF} \times \inf_{g} \\ w_{i,j} &= tf_{i,j} \times \log\left(\frac{N}{df_{i}}\right) \end{aligned} \qquad tf_{i,j} = \# of \ wor \ appera \\ df_{i} &= \# of \ wor \ docum \\ dd_{i} = \# of \ wor \ docum \\ holdi \ th \ i^{th} \ wor \ ou \ of \ N \ docum \end{aligned}$$

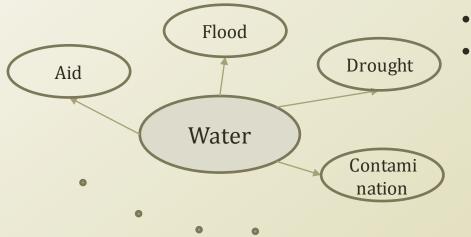
 TF-IDF helps us to find the word because of multiplication of TF and Inverse of DF(IDF) (Common place word like 'the, as, and' cannot get a high tf-idf value because of high df score)

Dynamic Analysis-Word

- Our goals :
 - 1. Analyze disasters trend (time-series analysis)
 - 2. Analyze word trend as dynamically via simple linear regression based on TF-IDF*

<Annual TF-IDF value of word 'interoperability' >

- The word, "**interoperability**", starts appearing frequently
 - The information between disaster organizations need to :
 - Communicate
 - Diffuse information
 - Operate seamlessly


(*Post-Traumatic Stress Disorder)

Kyungwoo Song(KAIST)

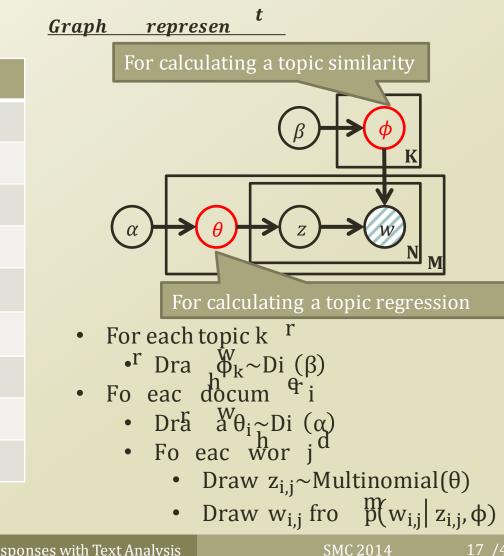
Dynamic Analysis-Word

- Restriction of Word Analysis :
 - 1. Hard to interpretation
 - 2. One dimensional information in gauging the relation of words to the disasters and response

< Multiple usages of the word >

< Simple ups and downs >

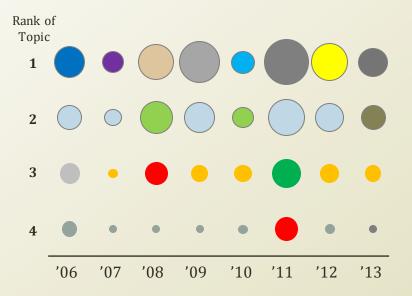
- Easy to know ups and downs
- Hard to know specific trend
 - Word importance should be supported by its context
 - Some words might be related together, and similarly


(*Post-Traumatic Stress Disorder)

Kyungwoo Song(KAIST)

LDA(Latent Dirichlet Allocation)[8]

Notat


Symbol	Meaning
α	Parameter for Dirichlet distribution
β	Parameter for Dirichlet distribtuion
$ heta_i$	Topic proportion in _d locument i
ϕ_k	Distrib ^u of wor in top k
W _{i,j}	j th wor in ^d th docum ^e
Z _{i,j}	Top assign m fo $w_{i,j}$
K	Number of topics
М	Number of documents
Ν	Number of words

Disasters and Responses with Text Analysis

Dynamic Analysis-Topic

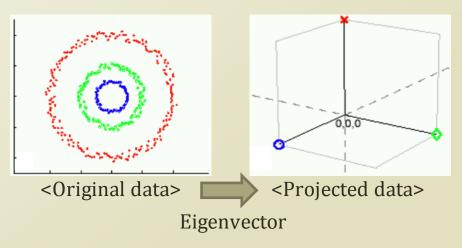
Topic proportion by year

Size of circle : topic proportion in the year Color of circle : type of topic

> ex) Blue • : topic about earthquake, Red • : topic about tsunami

- Difficulty of Analyzing topic evolution
- Hardness of topic similarity determination
 - Topic about earthquake in 2006 and topic about tsunami(triggered by earthquake) in 2008
- Necessity of topic clustering regardless of year

Dynamic Analysis-Topic


1. Draw ϕ values for each word and topic

	w^1	w^2	•••	w ^v
Topic1	0.02	0.27		0.15
Topic1 Topic2	0.13	0		0.23
:				

2. Calculate topic similarity between topics

$$S_{i,j} = \frac{\sum_{i=1}^{\nu} w_j^i \times w_k^i}{\sqrt{\sum_{i=1}^{\nu} (w_j^i)^2} \times \sqrt{\sum_{i=1}^{\nu} (w_k^i)^2}}$$
$$w_j^i = \phi \text{ val of } i^{\text{th}} w_0^{\text{er}} \text{ in } j^{\text{th}} t_0^{\text{ip}} d i$$
$$S_{i,j} = \text{simila betw} i^{\text{th}} \text{ top an } j^{\text{th}} \text{ top}$$

3. Spectral Clustering [9]

- For topic clustering regardless of the year
- Clustering based on similarity without a year
- Clustering technique based on eigenvalue and eigenvector
- Projection the data to lower dimension by using eigenvector to cluster easily

Result and Conclusion

Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

Result-Word analysis

WORD TF-IDF VALUE THROUGH ENTIRE CORPUS

<u>(2006' ~ 2013')</u>

Rank	TF-IDF	Word	Rank TF-IDF Word		Word
1	0.977	flood	od 16 0.723 partici		participants
2	0.960	tweets	17	0.705	organizations
3	0.921	earthquake	18	0.704	decision
4	0.882	simulation	19	0.685	game
5	0.815	ontology	20	0.685	tsunami
6	0.802	user	21	0.685	community
7	0.797	network	22	0.680	users
8	0.772	health	23	0.680	twitter
9	0.763	Risk	24	0.676	scenario
10	0.761	Team	25	0.673	exercise
11	0.750	vulnerability	26	0.666	agent
12	0.750	fire	27	0.646	children
13	0.737	incident	28	0.637	web
14	0.740	model	29	0.630	security
15	0.725	emergency	30	0.629	media

- Top 30 keywords from 2006 to 2013.
- Estimation of the major issues in the period.
- : "flood", "earthquake", "fire", "tsunami", indicate the importance of natural disasters.
- : "tweets", "simulation", "ontology" suggests the application of IT to the disaster responses.

Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

SMC 2014

Result-Word analysis

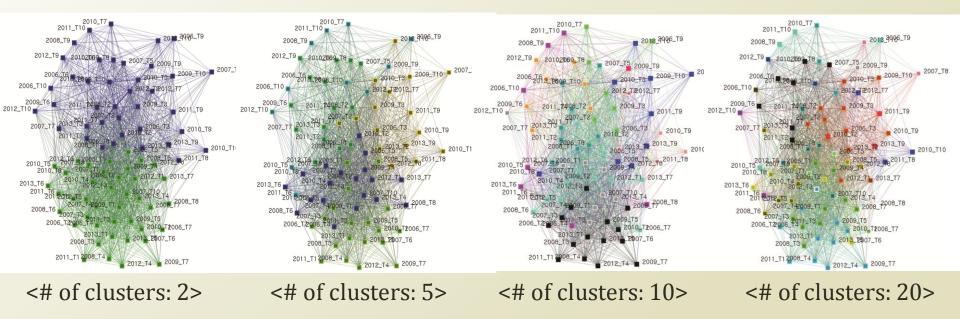
Fast Increasing word

Rank	Coeff.	Word	
1	0.0414	tweets	
2	0.0240	exercise	
3	0.0234	game	
4	0.0229	twitter	
5	0.0182	media	
6	0.0134	health	
7	0.0127	tweet	
8	0.0125	recovery	
9	0.0120	seed	
10	0.0116	interoperability	

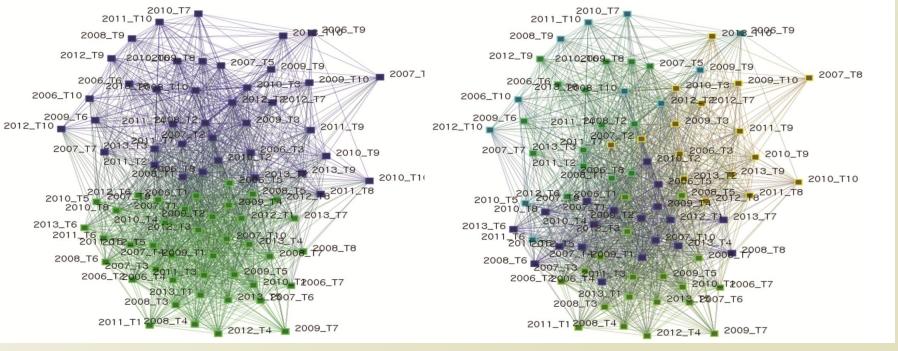
Fast Decreasing word

Rank	Coeff.	Word	
1	-0.018	Cash	
2	-0.016	Climate	
3	-0.007	Measles	
4	-0.005	Households	
5	-0.005	Agent	
6	-0.004	Vaccine	
7	-0.004	Heritage	
8	-0.004	SMS	
9	-0.004	Livestock	
10	-0.004	Mortality	

: Word about SNS and SMS


- SNS becomes popular in disaster area. (ex. SNS can be used to announcement or response of disaster)
- On the other hand, frequency of SMS becomes lower.
- Twitter replaces the role and function of SMS.
- : Word about simulation
- Simulation is widely used in the disaster area (ex. Simulation is used to training for disaster response)

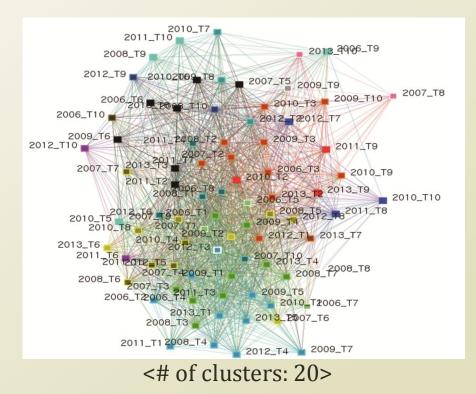
: Word about measles [10]


- Measles becomes less common disease.
- The number of measles changed from 370 thousand(in 2007) to 220thousand(in 2012)

Kyungwoo Song(KAIST)

Graphical representation of spectral clustering by changing number of clusters

Graphical representation of spectral clustering by changing number of clusters

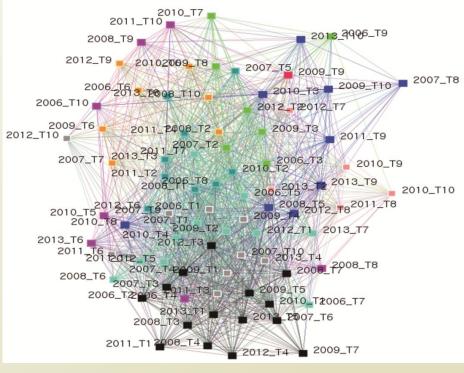


<# of clusters: 2>

<# of clusters: 5>

• Set as two or five makes the number of topics in each cluster is too many to find the specifics of the topic cluster.

Graphical representation of spectral clustering by changing number of clusters


• When the number of cluster is set to 20, there are very few merit of the clustering (The number of topics in each cluster is averagely less than four)

Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

SMC 2014

Graphical representation of spectral clustering by changing number of clusters

<# of clusters: 10>

• Set the cluster number as 10 when the result is most interpretable.

Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

SMC 2014

Simple Regression in each cluster

	Cluster	Coeff.		Major word in a each cluster					
	1	-0.001	Information	communication	Management	Organizations	Emergency		
ſ	2	0.016	disaster	factor	risk	people	impact	<u>Fast</u>	
	3	0.01	aid	organizations	security	food	relief	Increasing <u>Cluster</u>	
	4	-0.007	flood	task	modeling	coordination	networks		
	5	0.016	health	security	agencies	response	refugees		
	6	-0.019	children	population	household	impact	health	<u>Fast</u> <u>Decreasing</u>	
	7	0.002	response	support	decision	simulation	models	<u>Cluster</u>	
	8	-0.008	emergency	scenario	rescue	technology	simulation		
	9	-0.001	scenarios	sector	power	damage	families		
	10	-0.015	risk	people	vulnerability	building	hazards		

Kyungwoo Song(KAIST)

Disasters and Responses with Text Analysis

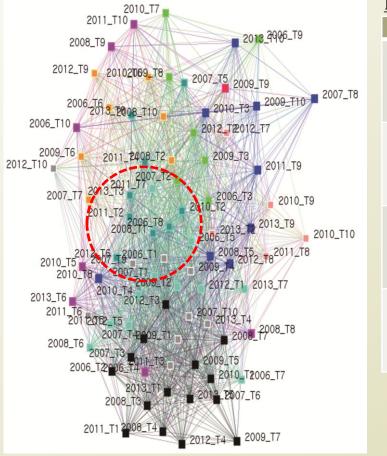
Simple Regression in each cluster

Cluster	Coeff.	Major words in a each cluster				
1	-0.001	Information	communication	Management	Organizations	Emergency
2	0.016	disaster	factor	risk	people	impact
3	0.01	aid	organizations	security	food	relief
4	-0.007	flood	task	modeling	coordination	networks
5	0.016	health	security	agencies	response	refugees
6	-0.019	children	population	household	impact	health
7	0.002	response	support	decision	simulation	models
8	-0.008	emergency	scenario	rescue	technology	simulation
9	-0.001	scenarios	sector	power	damage	families
10	-0.015	risk	people	vulnerability	building	hazards

• Fast increasing cluster is cluster 2 which consider the estimation method of damages of disasters

Simple Regression in each cluster

Cluster	Coeff.	Major words in a each cluster				
1	-0.001	Information	communication	Management	Organizations	Emergency
2	0.016	disaster	factor	risk	people	impact
3	0.01	aid	organizations	security	food	relief
4	-0.007	flood	task	modeling	coordination	networks
5	0.016	health	security	agencies	response	refugees
6	-0.019	children	population	household	impact	health
7	0.002	response	support	decision	simulation	models
8	-0.008	emergency	scenario	rescue	technology	simulation
9	-0.001	scenarios	sector	power	damage	families
10	-0.015	risk	people	vulnerability	building	hazards

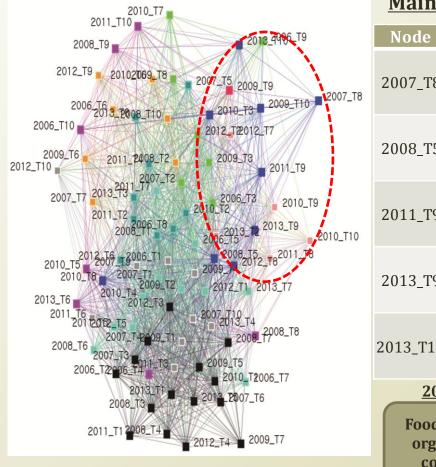

- Fast increasing cluster is cluster 2 which consider the estimation method of damages of disasters
- Cluster 6 which consider PTSD and physical damage of victim becomes less important.

Simple Regression in each cluster

Cluster	Coeff.	Major words in a each cluster				
1	-0.001	Information	communication	Management	Organizations	Emergency
2	0.016	disaster	factor	risk	people	impact
3	0.01	aid	organizations	security	food	relief
4	-0.007	flood	task	modeling	coordination	networks
5	0.016	health	security	agencies	response	refugees
6	-0.019	children	population	household	impact	health
7	0.002	response	support	decision	simulation	models
8	-0.008	emergency	scenario	rescue	technology	simulation
9	-0.001	scenarios	sector	power	damage	families
10	-0.015	risk	people	vulnerability	building	hazards

- Fast increasing cluster is cluster 2 which consider the estimation method of damages of disasters
- Cluster 6 which consider PTSD and physical damage of victim becomes less important.
- Instead of estimation focusing on PTSD, another damage estimation method becomes more popular

<u>Cluster 2</u>: Measurement of the disaster damage



Main node of Cluster 2

	Node	Words
8	2006_T8	children , earthquake , response, disasters, disaster, emerg ency, management, evaluation , emergencies, responses, na ture, health , labour, post , systems, reliability, resettlement, range, production, strategy,
	2007_T5	disaster, earthquake , housing, damage, cent, earthquakes, disasters, flood, planning, activities, community, risk , survi vors , post, studies, period, organisations, factors , buildings, reconstruction,
):	2011_T4	disaster , disasters, vulnerability , business , earthquake, i mpact, building, cent, community, security, preparedness, b usinesses, hurricane, respondents, survey, variables, govern ment , management, source, impacts ,
	2013_T8	disaster , community, vulnerability, cent, damage , manage ment, disasters, people, post, reconstruction, risk , event, hu rricane, reduction, factors , income , communities, family, ka trina, population,

- Estimation of survivors and children in 2006, 2007
- Relation between the disaster damage and the societal environment of the disaster in recent times

<u>Cluster 3</u>: Logistics effort

Main node of Cluster 3

	Node	Major 20 Words
2007_T8	2007_T8	food, aid, sudan, wfp, security, conflict, darfur, livelihoods, people, access, country, insecurity, protection, region, livelihood, production, peace, organisations, war, ngo,
	2008_T5	information, disaster , security, coordination , activities, ngos , trust, people, organisations, media, crisis, activity, approach, support, action, agencies , field, relief, aid , ngo,
9 2010_T10	2011_T9	people, tsunami, relief, coordination , ngos, aid , aceh, media, agencies, twitter , staff, issues, stress, focus, programme, standards, issue, sa, workers, assistance,
}	2013_T9	media, people, earthquake, aid, food , reports, china, governance, participation , countries, world, assistance, women, police, humanitarianism, emergency , report, role, information, awareness,
	2013_T10	government, protection, aid , children, conflict, rights , child, sudan, services, household , town, households , governments, famine, structures, violations, resettlement , livelihood, chad, shelter ,
	200	<u>7,2008</u> <u>2011</u> <u>2013</u>
	orgai	upply and hizational beration Humanitarian aid
Disaster	s and Resp	onses with Text Analysis SMC 2014 32 /40

Kyungwoo Song(KAIST)

Summary

• Identifying the evolution of disasters and responses with text-mining based on Disasters and ISCRAM paper

Summary

- Identifying the evolution of disasters and responses with text-mining based on Disasters and ISCRAM paper
- The information diffusion with IT and the organizational interoperation have been the quickly expanding topics in the community

Summary

- Identifying the evolution of disasters and responses with text-mining based on Disasters and ISCRAM paper
- The information diffusion with IT and the organizational interoperation have been the quickly expanding topics in the community
- Shift of the key interests: from the simple after action review of disaster responses to the societal aspects of disaster damage

Summary

- Identifying the evolution of disasters and responses with text-mining based on Disasters and ISCRAM paper
- The information diffusion with IT and the organizational interoperation have been the quickly expanding topics in the community
- Shift of the key interests: from the simple after action review of disaster responses to the societal aspects of disaster damage

Application

• The utilized analysis can be applied to different sources of texts, such as news articles and social media.

Summary

- Identifying the evolution of disasters and responses with text-mining based on Disasters and ISCRAM paper
- The information diffusion with IT and the organizational interoperation have been the quickly expanding topics in the community
- Shift of the key interests: from the simple after action review of disaster responses to the societal aspects of disaster damage

- The utilized analysis can be applied to different sources of texts, such as news articles and social media.
- The target corpus and the focus of the analyses can be adapted while reusing the methodology.

Summary

- Identifying the evolution of disasters and responses with text-mining based on Disasters and ISCRAM paper
- The information diffusion with IT and the organizational interoperation have been the quickly expanding topics in the community
- Shift of the key interests: from the simple after action review of disaster responses to the societal aspects of disaster damage

- The utilized analysis can be applied to different sources of texts, such as news articles and social media.
- The target corpus and the focus of the analyses can be adapted while reusing the methodology.
- For example, we can analyze the change of public perspective about disaster and response

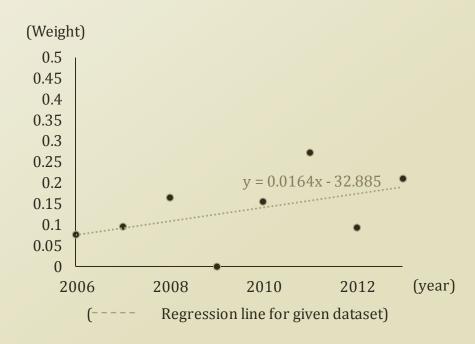
Reference

[1] Natural catastrophes and man-made disasters in 2013, Swiss Re Economic Research & Consulting [2] 2011 Japan Earthquake - Tsunami Fast Facts, CNN Library, 2014

- [3] eBay Data Breach -- The 'Inexcusable' Impact on 233 Million Customers, Leo Sun, 2014
- [4] J. I. Barredo, "Major flood disasters in Europe: 1950–2005," *Nat. Hazards*, vol. 42, no. 1, pp. 125–148, Nov. 2006.
- [5] R. C. Kessler et al., "Trends in mental illness and suicidality after Hurricane Katrina.," *Mol. Psychiatry*, vol. 13, no. 4, pp. 374–84, Apr.2008.
- [6] Q. Mei and C. Zhai, "Discovering evolutionary theme patterns from text: an exploration of temporal text mining," in *... conference on Knowledge discovery in data mining*, 2005, pp. 198–207.
- [7] S. Galea, "Trends of Probable Post-Traumatic Stress Disorder in New York City after the September 11 Terrorist Attacks," *Am. J. Epidemiol.*, vol. 158, no. 6, pp. 514–524, Sep. 2003
- [8] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet Allocation," J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.
- [9] H. Shinnou and M. Sasaki, "Spectral Clustering for a Large Data Set by Reducing the Similarity Matrix Size," in *In proceedings of the Sixth International Language Resources and Evaluation(LREC08)*, 2008, pp.201–204.
- [10] Progress in creating a world free of measles, rubella and congenital rubella syndrome, Measels & Rubella Initiative, 2013

APPENDIX

Kyungwoo Song(KAIST)


Disasters and Responses with Text Analysis

Dynamic Analysis-Topic

Result of Spectral clustering

<u>Cluster 1</u>	Topic proportion	<u>Cluster 2</u>	Topic proportion
2006_T1*	0.4	2006_T8	0.07
2006_T4	0.2	2007_T5	0.09
2008_T2	0.5	2008_T1	0.16
2008_T3	0.3	2010_T2	0.15
2008_T4	0.02	2011_T2	0.15
2010_T3	0.02	2011_T4	0.12
<u>Cluster 3</u>	Topic proportion	2012_T6	0.09
2006_T2	0.4	2013_T3	0.13
2006_T5	0.2	2013_T8	0.07
		Topics about	
•		damage estimation	

Linear regression

• Damage estimation is the increasing topics of interests in the community.

 $(*2006_T1: 1^{st} \text{ topic in } 2006)$

Spectral Clustering

Spectral Clustering

- Clustering the data based on the eigenvalue and eigenvector
- Calculate Laplacian matrix and its smallest k eigenvalue and corresponding eigenvector matrix V
- Projection the data to lower dimension by using eigenvector to cluster easily

$$L = I - D^{-\frac{1}{2}}SD^{-\frac{1}{2}}whe \quad D_{ii} = \sum_{j=1}^{n}S_{ij}$$

$$r$$

$$V = [v_1, \dots v_k] = D^{\frac{1}{2}}Ewhe \quad E = \begin{bmatrix} e_1 & \dots & e_k \\ \vdots & \ddots & \vdots \\ 0 & c & e & l \end{bmatrix}$$

$$e_i : vect \quad whi \quad eleme \quad ar \quad al \quad 1$$